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A B S T R A C T   

Parallel computing is a primary way to increase computing efficiency of grid-based distributed hydrological 
models. This study proposed an automatic partition-based parallel algorithm (APPA) to approach the theoretical 
maximum speedup ratio (TMSR). Through a combination of flexible partition for the domain decomposition and 
the load balance of parallel simulation, APPA optimizes the parallelization of hillslope and channel flow routing 
processes at sub-basin and channel unit level, respectively. To illustrate APPA’s performance, we embedded it in 
a distributed ecohydrological model, and then applied the updated model to three watersheds at different spatial 
scales. The results indicate that APPA effectively promoted parallel performance. The estimated speedup ratio 
approached 93–97% of the TMSR for simulating hillslope processes and 91–98% of the TMSR for simulating 
channel processes using 26-threads in all three watersheds. These improvements justify that APPA is effective in 
accelerating model simulation and thus benefits future model-based research.   

Software availability 

Software: APPA (Automatic Partition-based Parallel Algorithm) 
Language: C++

Availability: APPA is open-sourced on Github (https://github.com/xuzh 
enwu/APPA). 

1. Introduction 

Using distributed models to simulate coupled hydro-ecological pro
cesses at large spatial and long-term temporal scales can be cumbersome 
and time-consuming. With the rapid development of computer science, the 
parallelization of model simulation becomes an effective strategy for 
speeding up the computing efficiency (compared to the serial computing). 
One of the most important approaches for parallel computing is to partition 
a heavy computation task into several independent loads so that the sub- 
tasks can be allocated to multiple processors simultaneously. For water
shed modeling, parallel simulation often divides the study area into several 
independent sub-basins. Thus, each of sub-basins is treated as a single task 
and processed by an individual thread under the assumption that there are 

no, or relatively low, communications between sub-basins (Vivoni et al., 
2011). However, the task-partition-based parallel computing faces diffi
culties in finding the best partition solution, largely due to the spatial 
connectedness of coupled hydro-ecological process (e.g., water and solutes 
routing) in distributed models. 

In spite of aforementioned disadvantages, the parallel algorithm by 
partitioning a watershed into several sub-basins has proved to be 
effective in speeding up model simulations (Tian et al., 2008; Wang 
et al., 2011; Qin and Zhan, 2012). The partitioned-based parallel algo
rithm usually involves spatial domain decomposition, computational 
task allocation, and inter-process communication (Zhang and Zhou, 
2019). The spatial domain decomposition is to partition a large domain 
into smaller individual sub-basins that are arranged from upstream to 
downstream (Apostolopoulos and Georgakakos, 1997; Arnold et al., 
1998; Li et al., 2011). In addition to decomposition at sub-basin level, 
Liu et al. (2014) found that the distributed models can be parallelized at 
basic simulation-unit levels through a layered approach. Consequently, 
the computational tasks of these parallelized units are allocated for 
parallel computing. However, the dependency resulting from flow 
routing still coexists with concurrency. This can be either resolved by 
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simulation from upstream to downstream units at thread-level with 
shared-memory programing standard (Hwang et al., 2014; Liu et al., 
2014) or by simulation of units at process-level with message-passing 
programming standard (Tian et al., 2008; Li et al., 2011; Vivoni et al., 
2011; Wang et al., 2011). In practice, the former may be constrained due 
to the consideration of the task arrangement while the latter may suffer 
from poor efficiency caused by a heavy load of inter-process commu
nications (Li et al., 2011; Vivoni et al., 2011). Even so, a joint of them 
can break through the speedup ratio limit compared with using either of 
them (Liu et al., 2016; Zhu et al., 2019). Nevertheless, the exploration of 
partition-based parallel algorithms has greatly enhanced the computing 
speed of distributed models. Apart from the effectiveness (i.e., speedup 
ratio), the existing parallel algorithms need improving since the 
computational efficiency (i.e., parallel efficiency) is still restricted to the 
unit partition at a task parallelism level (Zhang and Zhou, 2019). 

To quantify the efficiency and guide the parallel algorithm devel
opment, the theoretical maximum speedup ratio (TMSR) has been pro
posed as a target to achieve the potential of parallel computing under a 
given number of processors (Wang et al., 2012). To approach TMSR in 
the flow routing systems of hydrological models, the critical path heu
ristic algorithm has proven to be effective in scheduling static tasks of 
partitioned sub-basins (Shirazi et al., 1990; Liu et al., 2013). Through 
analyzing basin width function, Wang et al. (2012) insisted that there is 
a maximum speedup curve for an arbitrary drainage network. In a 
preliminary application, they found that the more sub-basins are parti
tioned, the higher the TMSR is. In addition, the compact watersheds 
generally have higher TMSR than long and narrow watersheds. Liu et al. 
(2013) developed a method to estimate TMSR for parallel computing of 
hillslope and channel processes using grid-based distributed hydrologi
cal models. Efforts are continuously made to maximize the parallel ef
ficiency. Some researchers noticed that the parallel performance is 
improved with the increase of the number of partitioned sub-basins as a 
result of better load balance (Wang et al., 2012; Liu et al., 2016). Be
sides, the load balance is proved to significantly improve the parallel 
speed-up with proportionally faster runs as simulation complexity (i.e., 
domain resolution and channel network extent) increases (Vivoni et al., 
2011). These explorations help researchers recognize the potential of 
parallel computing under a given parallel algorithm. 

Application of distributed models at large-spatial scales driven by 
high-spatial resolution data can involve a huge number of simulated 
grids. Compared with models built at coarser units (e.g., sub-basins, 
hillslope), grid-level simulation usually consists of more simulation 
units (grids) and thus has a more extended and complex flow network 
(hillslope flow routings and channel flow routings). The increasing 
complexity of simulation not only increases computing burden, but also 
may bring greater potential of parallelization. Although channel reaches 
are usually set as the basis for sub-basin unit decomposition in prior 
partition-based algorithms (Arnold et al., 1998; Li et al., 2011; Vivoni 
et al., 2011), the grid-based models have no such restricts and each grid 
can be set as the potential outlet for extracting a sub-basin. As parti
tioned units are further allocated to different processors, the computa
tion efficiency is sensitive to the spatial domain decomposition (Li et al., 
2011; Zhang and Zhou, 2019). However, previous studies usually 
consider the spatial domain partition as a preliminary process before 
allocating computation tasks for parallelization. It is worth of investi
gating how the parallel efficiency will respond to the flexibility of 
partition for grid-based distributed models. To maximize the parallel 
performance, we argue that an optimal partition-based parallel algo
rithm should have following features: (a) the utilization of the load 
balance strategy throughout the preparation of a parallel scheme; (b) the 
search of potential parallel schemes based on flexible spatial domain 
partition for the optimal efficiency; (c) an estimate of real performance 
compared with the theoretical maximum performance; and (d) the 
applicability to most grid-based distributed models. 

To meet these criteria, this study proposed an automatic partition- 
based parallel algorithm (APPA) that aims to parallelize grid-based 

distributed models such that the theoretical maximum speedup ratio 
(TMSR) is approachable. By combining global search for potential 
partition schemes with the load balance strategy in parallel simulation, 
APPA optimizes parallelization of hillslope and channel flow routing 
processes at both sub-basin and channel unit levels, respectively. To 
illustrate APPA’s performance, we embedded it into the Coupled Hydro- 
Ecological Simulation System (CHESS, Tang et al., 2014, 2019), and 
applied the updated CHESS to three watersheds using various threads. 
The subsequent computing performances of parallel simulations were 
evaluated using the TMSR, estimated speedup ratio and real speedup 
ratio. Overall, this study provides a new parallel algorithm that can 
maximize the computing efficiency of parallel simulation, thus 
contributing to future model-based research. 

2. Developing the automatic partition-based parallel algorithm 

2.1. Parallel assumptions of grid-based hydrological models 

The automatic partition-based parallel algorithm (APPA) assumes 
that a typical grid-based distributed model has following characteristics:  

(1) Grids are basic units for simulating hydrological processes (e.g., 
infiltration, evaporation, runoff).  

(2) The overall hydrological processes can be classified as hillslope 
and channel processes in terms of flow equations (e.g., hillslope 
surface and sub-surface flow, and channel flow).  

(3) Flow routing among grids is generated by a single flow routing 
algorithm (e.g., D8 algorithm) such that runoff yield in a grid is 
routed to only a downslope neighboring grid. In addition, di
rections of surface and sub-surface flow are uniform for each 
hillslope grid.  

(4) Given the continuity and nature of downslope water movement, 
grids located in upslope or upstream areas take precedence dur
ing simulation. In practice, this is realized by arranging all grids 
in descending order according to their elevations.  

(5) The runtime for a grid simulation is assumed to be equal, or is 
determined by its own type. 

2.2. General parallelization scheme for the automatic partition-based 
algorithm 

The proposed APPA applies a two-level partition scheme for parallel 
computing so that the computing performance of grid-based distributed 
models can be enhanced. First, grids are divided into “hillslope grids” 
and “channel grids”, corresponding to hillslope processes (including 
surface and sub-surface flow) and channel processes (only containing 
channel flow). Second, the two processes are further partitioned as sub- 
basin units and channel units that are allocated to different threads for 
parallel computing. By doing so, the original serial simulation is divided 
into several rounds of parallel simulations. Within each round of parallel 
simulation, the partitioned units are assumed to be independent and 
allocated to different threads that do not communicate with each other. 

Fig. 1 depicts the two-level parallel scheme and the corresponding 
parallel algorithm developed for a four-core computer. Daily simulation 
of overall processes is divided into simulation of hillslope and channel 
processes. For hillslope processes, the computation tasks of five parti
tioned sub-basins are eventually allocated to four threads (Fig. 1a). For 
channel processes, the parallel computing consists of five sequential 
layers. The first layer contains seven independent units, which are 
further allocated to four threads (Fig. 1b). Similarly, three middle layers 
are sequentially parallelized. The last layer of channel processes is 
computed by one thread, as it has no branches for partitioning. Based on 
unit partitions and thread allocations, the proposed algorithm adopts a 
fork/join structure to achieve parallel computing, and considers the load 
balance among processors to improve parallel performance (Fig. 1c). In 
addition, no communication costs exist among threads in each round of 
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parallel computing (e.g., hillslope processes, channel processes in first 
layer). Within each thread, grids are simulated in descending order of 
elevation to keep flow movement. Daily simulation of hydrological 
processes terminates when the outlet grid is complete. 

2.3. Principles of optimization for automatic partition-based 
parallelization 

To approach the optimal state of partition-based parallelization, 
APPA adopts the following principles:  

(1) Searching the potential parallel scheme repeatedly to select the 
optimal scheme. As the selected model is grid-based, the size of 
partitioned units can vary due to many choices of the potential 
outlet grids. Each channel grid has the potential to be the refer
ence point to trace all upstream grids that can be grouped into a 
sub-basin or channel unit. Given this, the accumulated runtimes 
for grid i (TG,i, Figs. 2b and 5b) are used to estimate the required 
time for simulating all grids within a sub-basin or channel unit. 
When the runtimes for each grid are specified, the total TG ac
cumulates as the flow routes downslope to the outlet. In theory, if 
the runtimes for simulating each grid are identical, the number of 
grids is just a proxy of the accumulated runtimes (TG). Due to the 
flexibility of selecting outlets for sub-basin or channel units, it is 
likely to obtain the best parallel scheme by comparing computing 
performances under different domain partitions.  

(2) Utilizing the load balance strategy to composite the partitioned 
units as the final parallel scheme. For example, the partitioned 
sub-basin units are assigned to groups with possible balanced 
runtime so that the final runtime for hillslope processes is mini
mized (Fig. 1a).  

(3) Measuring the parallel performance to approach theoretical 
performance. As the goal of partitioning is to fully utilize the 
computation power of computers with n available processors, this 
study used three kinds of speedup ratios (SR) to evaluate the 
parallel performance: the theoretical maximum speedup ratio 
(TMSR), the estimated speedup ratio (ESR), and the real speedup 
ratio (RSR). SR is defined as the ratio of the time cost of serial 
computing (TS) to that of the parallel computing with n pro
cessors (Tn) (Hwang et al., 2014). 

SR= TS/Tn (1) 

The overall processes are divided into hillslope processes (hs) and 
channel processes (ch), and there are three types of SR for each of 
processes. TMSR indicates the full utilization of all allocated threads. As 
there are no communications for hillslope processes among sub-basins, 
the TMSR of hillslope processes equals the number of threads (n) 
when the load balance among threads is fully achieved (TMSRhs = n). 
For channel processes, TMSRch is determined by the longest exit length, 
which represents the minimum possible execution time (Shirazi et al., 
1990; Liu et al., 2013). It is computed as the ratio of the serial runtime 
spent for the longest channel exit length (Tls) to the required runtime for 
serial computing of channel grids (Tch): 

TMSRch =
Tch

Tls
(2) 

Then, the overall TMSR is computed as follows: 

TMSR= 1/(phs /TMSRhs + pch /TMSRch) (3)  

where, phs and pch refer to the runtime proportion for hillslope and 
channel processes, respectively, relative to the overall simulation values 
(phs + pch = 1). 

The estimated speedup ratio (ESR) is the estimate of speedup ratio 
for a given parallel scheme based on the load balance in the fork/join 
structure (Fig. 1c). To compute ESR, TS is defined as the total runtimes of 
all partitioned grids, and Tn is defined as the thread that is allocated with 
the maximum runtime of partitioned grids (Eq. (1)). RSR is computed by 
the testing results of real runtimes of serial and parallel computing. In 
comparison, RSR is generally the smallest value since it accounts more 
costs (TMSR > ESR > RSR). 

Parallel efficiency (EP) is used to quantify the efficiency in parallel 
computing and defined as the speedup ratio to the number of available 
processors: 

EP= SR/n (4)  

2.4. Parallel simulation of hillslope processes 

The simulation of hillslope processes is most time-consuming, as it 
involves the most of grids to be simulated. In practice, parallel 
computing of hillslope processes involves sub-basin partitions and 
thread allocation. As the partitioned sub-basin units are independent, 
the parallel computing of hillslope processes should be finished in one 
round of parallel computing with optimal thread allocation. In addition, 

Fig. 1. A parallel scheme developed for a four-core 
computer when applying a distributed model to a 
watershed. S1 to S5 are five independent sub-basin 
units partitioned for hillslope processes. C1 to C8 
are eight independent channel units partitioned for 
the first layer of channel processes. These units are 
allocated to different threads as per the load balance 
strategy. The bold shiny red lines represent all grids 
of the sequential parallelized middle layers (layer 
2–4). The bold black line represents the last layer that 
is processed by one thread (layer 5). The fork/join 
structure is adopted for each round of parallel 
computing.   
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an extra scheme selection process is provided for obtaining optimal 
parallel performance. The three steps are described in the following 
paragraphs. 

The sub-basin partition starts with the definition of partition goals. 
First, we define the total computation time needed for hillslope pro
cesses as the required time for simulating all hillslope grids (Ths). Thus, 
the theoretical minimum runtime for all n threads (Ths,n) is expressed as: 

Ths,n = Ths
/

n (5) 

Specially, the maximum computation time demanded for partitioned 

sub-basins (SM) is determined by Ths,n: 

SM =
Ths,n

D
(1 + θS) (6)  

where, the deviation index (θS) and decomposition index (D) indicate 
the variation of SM; θS represents minor variations of SM, which will not 
significantly increase the number of final partitioned sub-basins (m); and 
D represents significant changes in SM. For example, m approximates 
twice of the value of n when D is 2. 

In practice, a potential outlet grid with satisfactory accumulated 

Fig. 2. Workflow of building parallel schemes for simulating hillslope processes. Data shown here are based on an application in the Yuecheng watershed in southern 
China using a four-core computer, which contains 12,944 hillslope grids. 

Fig. 3. Illustration of variables used in the APPA for best load balance in parallelization of channel processes.  
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runtime (TG,S) will be searched from all channel grids. This potential 
channel grid assures that the subsequently partitioned sub-basins are 
independent in terms of hillslope processes, and it will retain a closest 
value to, but lower than SM. 

TG,S =

{
TG,i when 0 ≤ SM − TG,i < SM − TG,S
TG,S others (7)  

where TG,S is initialized as zero before the searching process. The value 
of TG,S may be updated as the algorithm searches through all channel 
grids. 

When a grid is captured (TG,S > 0), it will be set as the reference 
outlet to trace the corresponding sub-basin (Fig. 2c). Once a sub-basin is 
obtained, the accumulated runtime for all grids (TG) will be recomputed, 
and then the program starts to search for next sub-basin until all hill
slope grids are grouped into the partitioned sub-basins (Fig. 2d). 

The thread allocation process allocates the computation tasks of in
dependent sub-basins to available threads in one loop of parallel 
computing (Fig. 1c). To optimize the allocation for obtaining the best 
load balance, APPA tries to reduce the maximum runtime among all 
threads. First, the thread with maximum runtime and the thread with 
minimum runtime are chosen, respectively. Then, the smallest sub-basin 
in the thread with maximum runtime is moved to the minimum thread. 
If it successfully reduces the maximum runtime among all threads that 
limits the parallel performance, the redistribution process continues. 
Otherwise, the optimal state of allocation is achieved. For example, the 
first-to-fifth sub-basins in Fig. 1a are assigned to four threads in order, i. 
e., sub-basin 5 is assigned to thread 1. As thread 1 is the thread with the 
maximum runtime, the smallest sub-basin in thread 1 (sub-basin 5) is 
reassigned to thread 3 with the minimum runtime. It retained as the 
optimal result of allocation where sub-basin 5 and sub-basin 3 are pro
cessed by the same thread (Fig. 1c). After all hillslope grids of sub-basins 
are allocated to specific threads, the applicable parallel scheme for 
hillslope processes is completed. 

The strategy for the outer selection process is to choose the optimal 
scheme in terms of ESR (Fig. 2a). Since the maximum runtime of sub- 
basins (SM) is subject to changes in the deviation index (θS) and 
decomposition index (D), the proposed algorithm examines all potential 
parallel schemes. Empirically, θS has a value ranging from 0 to 0.4 and 
iterates by a step of 0.05. The decomposition index (D) is designed to 
increase the number of sub-basins several times. As D iterates from 1 to a 
larger value, it will reveal how the variation of domain decomposition 
affects parallel performance. Then, the best parallel scheme is selected 
from all schemes based on the ESRs. 

2.5. Parallel simulation of channel processes 

Channel routing processes significantly affect the computing per
formance of model simulation. Although channel units are inter- 
connected units with binary structures, they can still be considered in
dependent when all channel units are treated in a same “layer” (Liu 
et al., 2014). As a result, the upstream-downstream computation 
dependence only imposes restrictions on the outer and inner layers 
where the channel units in outer layers take precedence over those in 
inner layers during simulation. Thus, the aforementioned partition and 
allocation processes are applicable in parallelizing channel processes 
into several layers. However, the more layers there are, the more rounds 
of parallel computing are needed. Because APPA adopts flexible parti
tion strategy for grid-based models, the partitioned channel units do not 
necessarily follow the locations of stream reaches. In general, similar to 
hillslope processes, the parallel computing of channel processes involves 
channel unit partition and thread allocation. In addition, an extra 
scheme selection process is provided for obtaining the optimal parallel 
performance in simulating channel processes. 

The channel unit partition and thread allocation are synchronous 
processes. As with simulating hillslope processes, we define a maximum 

runtime of threads for channel processes (Tch,m in Fig. 3), and thus the 
strategy of partition is to fill up Tch,m, which is assumed to be the same in 
all threads for load balance. Specially, we defined the available runtime 
of thread i (TA,i) to limit the size of rest of the runtimes of thread i that 
can be allocated for a potential channel unit (TG,S). Like setting the 
priority for larger sub-basin units in hillslope parallel computing, the 
thread with the largest available runtime (TA,M) should be filled up first 
with a new channel unit (Step 1 in Fig. 3): 

TA,M =max
(
TA,1,…,TA,n

)
(8) 

As with the available runtime of a sub-basin (SM, Eq. (6)), TA,M limits 
the size of accumulated runtimes of the partitioned channel unit (TG,i) 
for channel processes. The final outlet should meet the requirement that 
TG,S has a slightly lower value than TA,M (step 2 in Fig. 3): 

TG,S =

{
TG,i when 0 ≤ TA,M − TG,i < TA,M − TG,S
TG,S others (9)  

where TG,S is initialized as zero before the searching process. The value 
of TG,S may be updated as the algorithm searches through all unparti
tioned channel grids. 

If TG,S is greater than zero, the corresponding grid is set as the 
reference outlet to trace the channel unit (Fig. 5c), which is further 
allocated to TA,M (Step 3 in Fig. 3). To eliminate the influence of this 
unit, all the other channel grids located downstream will be excluded 
from the subsequent searching of TG,S to avoid upstream-downstream 
connection in this layer. The accumulated runtimes of other grids 
(TG,i) will be re-computed. Specifically, the available runtime of the 
maximum thread will be updated using the following equation: 

TA,M = TA,M − TG,S (10) 

If TG,S remains zero, the computing for this layer is finished and the 
unit partitioning and the thread allocation process is terminated. 

After several rounds of parallel simulation, the channel processes are 
finished and the maximum runtime for each thread (Tch,m) in the layer is 
determined. Then, the runtime of all threads (TO,V) in each layer is 
defined as: 

TO,V =
∑

TO,i (11)  

where TO,i is the total runtime of thread i and Tch,m = TO,i + TA,i. To 
search all the possibilities of parallel schemes in the layer, Tch,m is set as 
the smallest value in the first iteration, i.e., the runtime for a channel 
grid (Tch,m = TCG, Fig. 4b), and kept updating as θG increases: 

Tch,m =max
(
Tch,m(1+ θG), Tch,m + TCG

)
(12)  

where max is the maximum function that returns the greatest value. 
Once a new Tch,m is obtained, the program records the estimated runtime 
of all threads (TO,V) and the estimated speed up ratio (ESRch). This 
process will be terminated once TO,V has covered all channel grids with 
undefined layers and threads (Fig. 4d). ESRch is the serial time (TO,V) 
divided by the maximum runtime in a thread in parallel computing: 

ESRch =TO,V
/

max
(
TO,i

)
(13) 

Fig. 4a shows how ESRch and TO,V vary as the key variable Tch,m in
creases using a four-core computer. As Tch,m increases from 1 to 113, 
ESRch remains having the maximum value of 4 and TO,V keeps increasing 
(Fig. 4a). However, the applicability of parallelization drops when Tch,m 

exceeds 113 and ESRch drops. When Tch,m exceeds the maximum accu
mulated runtime among all channel grids, they will be allocated to the 
same thread and ESRch is 1 (Fig. 4d). As the speedup ratio is the top 
priority of parallelization, the schemes with the largest ESRch are picked 
for next-round comparisons (Tch,m ranges from 1 to 113, Fig. 4a). Then, 
the scheme with the highest TO,V is selected (Fig. 4c). This selection 
process can avoid involving too many layers and thus reduce time spent 

Z. Xu et al.                                                                                                                                                                                                                                       



Environmental Modelling and Software 144 (2021) 105142

6

in allocating threads. 
Similar steps in scheme generation processes are performed until all 

channel grids are allocated to a specific layer and thread (Fig. 5a). As the 
partition processes move to the outlet, the applicability of paralleliza
tion decreases and the last layer with a channel unit is processed using 
one thread (the black bold line in Fig. 1b). Empirically, the only tunable 
parameter θG is set as 0.05. 

According to the characteristics of layers, several rounds of parallel 
computing can accelerate the simulation of channel processes. Model 
simulation for a given time scale (e.g., day) will terminate once the 
simulation for the outlet of the watershed was complete (Fig. 1c). 

3. Application and testing of APPA: A case study 

The Coupled Hydro-Ecological Simulation System (CHESS, Tang 
et al., 2014, 2019), a grid-based distributed model, was applied to test 
the proposed APPA. CHESS simulates integrated water, carbon, nutrient 
dynamics as well as vegetation growth in terrestrial ecosystems at 
watershed and regional scales. In CHESS, the routing of water and sol
utes among grids is explicitly simulated. When the model is applied at 
high spatial resolution and large spatial scales, the implementation of 
parallel computing becomes crucial for improving the computation 
efficiency. 

In this study, the parallelization of CHESS was implemented through 
the Open Multi-Processing (OpenMP) library by C/C++ compilation 
(Fig. A1). First, CHESS reads the thread information and lists all grids of 
each thread in a descending order of grid elevations. In each loop of 
parallel computing, the threads compute corresponding grids whose 
addresses are stored in a specific array. To perform the fork/join struc
ture, the main thread can continue until all parallelized threads are 
completed. Model simulation for a given time scale (e.g., day) will 
terminate once the parallel simulation of all grids is completed. 

Three watersheds located in southern China were selected for eval
uating the performance of proposed parallel algorithms (Fig. 6). They 
differ in total number of grids and areal coverage (Table 1). The two 
smaller watersheds are actually sub-watersheds of the biggest, and 
named corresponding to hydrological stations (Yuecheng and Long
chuan). They represent ten-thousand-grid and hundred-thousand-grid 

level simulations, respectively. In contrast, the largest watershed, 
Dongjiang, consists of almost a million of grids in 200-m resolution, and 
represents another level of simulation. 

One super-computer, which is equipped with two-way, 14-core, Intel 
Xeon E5-2683 2.0 GHz CPUs, and supports the parallel computing by a 
maximum of 28 processors/threads, was used to analyze parallel effi
ciency of the proposed algorithm. The parallel simulations are per
formed using different numbers of processors and the resultant parallel 
performances, based on different numbers of threads that vary from 2 to 
32 (by an interval of 2), are compared with the original serial simulation 
to analyze the computing performance of the proposed algorithm. 

4. Results 

4.1. Optimizing the parallel computing of hillslope processes 

Since sub-basins are basic units in the parallel computing of hillslope 
processes, the partition of sub-basins significantly affects the perfor
mance of parallel computing. To find the best parallel scheme, APPA 
uses the deviation index (θS) and the decomposition index (D) to adjust 
the size of estimated runtime for partitioned sub-basins (SM). Fig. 7 
shows the variation of estimated speedup ratio (ESR) and the relative 
increments of ESR under different parallel schemes as the number of 
involved threads increases. In the reference parallel scheme series (θs =

0, D = 1), ESR increases linearly as more threads are involved (black 
line, Fig. 7a). When change the size of SM, θs varies from 0 to 0.4 by a 
step length of 0.05, and the optimal result is selected from 9 parallel 
scheme series (blue lines). Based on optimal results, the maximum ESR 
(green line) increases by about 20% compared with the reference series 
when the number of threads ranges from 8 to 32, which approximates 
half the space between the TMSR (red line) and the reference ESR (black 
line, Fig. 7b). 

The number of partitioned sub-basins also poses a great effect on the 
speedup ratio of parallel computing. For comparison, the reference 
parallel scheme series (black line in Fig. 7c) are set as optimal results 
generated by searching different θs, under the condition that the 
decomposition index (D) equals 1 and the number of sub-basins ap
proximates the number of threads (green line in Fig. 7a). To change the 

Fig. 4. Selection of the optimal parallel scheme based on estimated speedup ratio (ESRch) and the runtime of all threads (TO,V). Data shown here are based on the first 
layer of parallel computing applied in the Yuecheng watershed using a four-core computer. 
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number of partitioned sub-basins, we have D vary from 1 to 8 by a step of 
1 and the optimal results are selected from 8 parallel scheme series 
(green lines, Fig. 7c). Fig. 7b illustrates how D promotes the maximum 
ESR by searching potential schemes under different D. Fig. 7d indicates 
that the increasing partition of sub-basins can increase ESR when the 
number of threads exceeds 8; however, it does not necessarily increase 
ESR when the number of threads ranges from 2 to 6. In general, the 
maximum ESR increases by 4–17% compared with the reference ESR. By 
searching different parallel schemes with different θs and D, APPA 
achieves the potential of parallel computing while the maximum ESR is 
raised up to 97–99% of TMSR in Dongjiang watershed (Fig. 7c). 

4.2. Optimizing the parallel computing of channel processes 

APPA aims to increase the speedup ratio and reduce rounds of par
allel computing in the implementation of the layered approach for 
simulating channel processes. In the case of Dongjiang watershed, the 
parallel simulation based on the proposed algorithm generates 18 layers 
for parallel simulation. In contrast, the original layered approach gen
erates more than 2898 layers for the channel processes (grids in the 
critical exit length) if it simply allocates a grid to a single thread (Liu 
et al., 2014). Although ESR is the top priority in each layer of the pro
posed algorithm, the potential of parallelization decreases as more 
channel units are partitioned (Fig. 8a). As a result, the ESR for inner 

layers drops significantly. For the last channel unit (that has no 
branches), it cannot be parallelized and ESR is 1 for all three watersheds. 
In general, ESR increases as the number of involved threads increases 
(Fig. 8b). However, the increase in ESR has a ceiling when ESR ap
proaches TMSR. Because the proposed algorithm explores all the 
possible partition-based schemes and considers the load balance of 
parallelization, the final ESR of channel processes is comparable with 
TMSR. The results based on three watersheds show that the maximum 
ESR can reach 91–98% of TMSR using 26-threads (Table 1). 

4.3. Evaluating real parallel performance 

Fig. 9 illustrates the variations in execution time, speedup ratio, 
parallel efficiency, and the efficiency deficit as the number of threads 
changes for the Dongjiang watershed. The execution time for hillslope 
processes drop sharply, and the speedup ratio increases, as the number 
of threads increases (Fig. 9a and b). The estimated speedup ratio for 
hillslope processes (ESRhs) reaches 25.1, and the real speedup ratio 
(RSRhs) reaches 21.6 (86.1% of ESRhs) under 26-threads. For channel 
processes, the real speedup ratio under 26-threads (RSRch,26) is 6.6, 
approximating 89.2% of the estimated value (7.4). As hillslope grids 
account for 97.9% of all grids, the overall performance is mainly 
determined by performance of simulating hillslope processes. 

In general, the parallel efficiency using more threads is lower 

Fig. 5. Workflow of building the parallel scheme for simulating channel processes. Data shown here are based on application in the Yuecheng watershed in southern 
China using a four-core computer. The watershed contains 569 channel grids. 
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(Fig. 9c). The estimated parallel efficiency for hillslope processes is 
relatively stable, approximating 97% of the theoretical efficiency. After 
the estimated speed ratio for channel process (ESRch) peaked at 7.4, the 
parallel efficiency drops continuously, which greatly reduces the par
allel efficiency for simulating overall processes. 

The efficiency deficit, defined as the difference between the real and 
estimated parallel efficiencie, indicates how the real speedup ratio ap
proximates estimated performance. The efficiency deficit is less than 

10% for all processes when the number of threads is less than 24. 
However, when the number of threads exceeds 28, the real efficiency 
decreases dramatically as the super-computer used in this study only has 
28 cores (Fig. 9d). 

Fig. 10 shows the overall performance of parallelization applied in 
three watersheds. The ESRhs using 26-threads varies from 24.3 to 25.1 
for the three watersheds and accounts for 93–97% of TMSRhs. The per
formances among the three watersheds differ mainly in TMSRch, which 
is quantified by channel width function. As a result, the parallel simu
lation of the Dongjiang watershed has a larger speedup ratio compared 
with the two smaller watersheds (Table 1). Meanwhile, there is no sig
nificant difference in the efficiency deficit among the three watersheds, 
which is less than 10% when the number of threads is less than 24 
(Fig. 10d). In general, APPA is efficient in parallel computing and the 
estimated performance is consistent with real performance. 

5. Discussion 

Grid-based distributed mechanistic models are increasingly used for 
evaluating surface and subsurface hydrological processes. Parallel 
computing attempts to tackle the computing challenge for applying 
distributed models at large spatial and long-term temporal scales. In 
general, a parallel algorithm is only feasible for models that fit specific 
parallel assumptions, which regulate the implementation of the parallel 
framework with little or no loss of model’s accuracy. By setting as
sumptions as pre-conditions, a parallel algorithm can better describe 
ideal state of high-performance computation and seek the optimal 
method to reach the ideal performance. In this study, the proposed APPA 
algorithm is designed for grid-based distributed hydrological models to 

Fig. 6. Three watersheds located in southern China, and the drainage networks in these watersheds.  

Table 1 
The parallel performance for the three watersheds using 26 threads.  

Watershed Dongjiang Longchuan Yuecheng 

Area (km2)  31,612 8,157 541 

Number of grids 790,304 203,914 13,513 
Portion of channel grids 2.1% 2.7% 4.2% 
TMSRhs,26  26 26 26 
TMSRch, 26  8.1 7.2 3.6 
TMSR26  24.8 24.2 20.6 
ESRhs, 26  25.1 25.0 24.3 
ESRch, 26  7.4 6.7 3.6 
ESR26  23.9 23.3 19.5 
RSRhs, 26  21.6 21.8 23.3 
RSRch, 26  6.6 6.1 3.3 
RSR26  20.6 20.3 19.4 

*TMSR, ESR, and RSR denote the theoretical maximum speedup ratio, estimated 
speedup ratio, and real speedup ratio, respectively. hs and ch represent hillslope 
processes and channel processes, respectively. The subscript 26 refers to the 
number of threads. 
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obtain the optimal computing performance under given hardware 
condition. 

Flow routings, which keep water flow along the gravity gradient, are 
the source of challenges in parallelization for hydrological models. Our 
proposed APPA assumes that models should adopt a single flow routing 
algorithm, by which flow generated in a center grid is routed to only one 
downslope neighboring grid (O’Callaghan and Mark, 1984). As a result, 
sub-basins are assumed to be independent in terms of hillslope pro
cesses. Otherwise, additional approaches are required to meet the de
mand of message passing among these parallelized units. For example, 
Vivoni et al. (2011) used ghost cells to simulate lateral subsurface flow 
for ridge grids, which are located on shared boundaries between 
sub-basins. In fact, multiple flow routing algorithms, based on topog
raphy (Quinn et al., 1991; Seibert and McGlynn, 2007) or real-time 
water level (Dai et al., 2019), consider flow dispersion at each grid 

and grids at watershed ridges, in which flow can belong to two or more 
partitioned sub-basins. Nevertheless, it is still likely for these models to 
adopt an independent partition-based parallelization without commu
nication among partitioned units if flow generated at ridges of 
sub-basins is only routed in one direction. Since ridge-grids account for a 
small portion of all simulated grids and model outputs are averaged for 
the whole watershed, differences between parallel and serial computa
tion may be negligible. Apart from this, the use of parallel algorithm can 
be performed flexibly with better understanding of model structures 
related to flow routing. In this study, APPA was applied for the whole 
model simulation as CHESS has closely coupled runoff production and 
routing processes at grid level. For models that have independent runoff 
generation and routing processes, which are usually simulated in a 
sequential order, APPA can also be selectively used for only routing 
processes (Liu et al., 2014). 

Fig. 7. Comparison of parallel performances for various partition-based parallel schemes for hillslope processes generated by different deviation (θs) and composition 
indexes (D). ESR is the estimated speedup ratio given by APPA. TMSR refers to theoretical maximum speedup ratio. θs ranges from 0 to 0.4, by a step of 0.05, and D 
ranges from 1 to 8 by a step of 1. 

Fig. 8. (a) The estimated speedup ratio decreases as the simulated layer moves downstream to the outlet using 32 threads; (b) The estimated speedup ratio increases 
sharply at first, and then the trend flattens as the number of threads increases. The horizontal lines denote the TMSR of parallelization for channel processes in 
three watersheds. 
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APPA classifies simulated grids as either hillslope grids or channel 
grids. The former indicates where hillslope processes (e.g., surface and 
sub-surface flow routing) occur, and the later represents where channel 

processes (e.g., channel flow routing) take place. This assumption is 
suitable for most grid-based distributed models at regional or large- 
spatial scale (e.g., VIC, Liang et al., 1994; RHESSys, Tague and Band, 

Fig. 9. Evaluation of parallel performance in simulating hillslope, channel, and overall processes based on a ten-year simulation for the Dongjiang watershed under 
different numbers of threads. The efficiency deficit denotes the difference between the real and estimated parallel efficiencies. 

Fig. 10. Evaluation of the overall parallel performance in three watersheds. Data shown here are based on a ten-year simulation under different numbers of threads. 
The efficiency deficit denotes difference between the real and estimated parallel efficiencies. 
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2004). For models that have no specification between the two processes, 
users of APPA can set a boundary value for accumulated runtime 
(TG,BHC) to separate “hillslope grids” from “channel grids”. As suggested 
by Vivoni et al. (2011), the best strategy of parallelization for large river 
basins is to combine a balanced partitioning with an extended channel 
network. As the outlet of sub-basins must be a channel grid such that 
sub-basins are independent in terms of hillslope processes, the magni
tude of TG,BHC will limit the size of the smallest sub-basin and imposes 
restriction on uses of more threads used in parallel computing. For 
example, when the value of TG,BHC is 10% of time for serial computing, 
the estimated speedup ratio for channel processes will approach the 
limit of 10 in spite of increasing number of threads. Empirically, the 
value of TG,BHC should be within the range of 0.5–5% to tap the potential 
of hillslope parallelization. 

For grid-based models, if aforementioned assumptions are meet, 
APPA will approach the TMSR by searching for the optimal spatial 
domain decomposition and computational task allocation. To better 

illustrate the parallel performance, APPA was tested using a typical grid- 
based model, i.e., CHESS. In experiments, the proposed approach is not 
only efficient as a result of optimization for partition-based paralleli
zation, but also easy to use since the deployment of parallel simulation 
with APPA requires little knowledge of shared memory programing to 
achieve the fork/join structure (Fig. A1). For parallel performance, the 
estimated speedup ranges from 19.5 to 23.9 using 26 threads for the 
three watersheds, which almost reach the theoretical limit (~96% of the 
TMSR, Table 1). The corresponding real speedup ranges from 19.4 to 
20.6. 

A comparison between our results and prior work in adoption of high 
performance using distributed hydrologic models indicate a set of gen
eral outcomes in parallel performance (Vivoni et al., 2011). In Table 2, 
we investigated various parallel frameworks and briefly summarized 
their key findings from case studies. The source of differences between 
those approaches lies in the basic simulation unit in hydrological 
simulation, which influences the complexity of model simulation. The 

Table 2 
Summary of various parallel frameworks.  

References Parallel 
framework/ 
Hydrological 
model 

Basic unit Protocol Key features/findings Best RSR 
(np*nt) 

Derived 
REP 

Data source 
in 
references 

Additional notes 

Apostolopoulos 
and 
Georgakakos 
(1997) 

/ Sub-basin / A primary exploration for 
parallel computing in 
hydrological modelling 

~2.3/4 (nt) 0.58 Fig. 6 / 

Vivoni et al. 
(2011) 

tRIBS model Triangular 
irregular 
network (TIN) 

MPI Load balancing significantly 
improves RSR with 
proportionally faster runs as 
simulation complexity 
(domain resolution and 
channel network extent) 
increases 

~23/32 
(np*nt) 
~70/512 
(np*nt) 

0.72 
0.14 

Fig. 10 Suggested 
combining a 
balanced 
partitioning with an 
extended channel 
network 

Li et al. (2011) DYRIM model Hillslope/sub- 
basin 

MPI A new dynamic basin 
decomposition method 

4.39/8 (nt) 
5.34/13 (nt) 

0.55 
0.41 

Table 1 / 

Wang et al. (2011) Xinanjiang 
model +
Muskingum flow 
routing model 

Hillslope/sub- 
basin 

MPI Found limited enhancement of 
computing efficiency due to 
constraints of the binary-tree- 
based drainage network 

7.8/10 (nt) 0.78 Fig. 12 TMSR: 9.1 

Wang et al. (2012) Xianjiang model 
+ diffuse wave 
flow routing 
model 

Hillslope/sub- 
basin 

MPI Proved the existence of 
maximum speedup ratio curve 
in parallel computing of the 
binary-tree-based drainage 
network 

10.1/13 (nt) 0.78 Fig. 8 TMSR:11.26 

Liu et al. (2014) A layered 
approach 

Sub-basin or 
basic unit 

OpenMP Dispatched simulation tasks in 
sequential layers at sub-basin 
level or basic unit level 

~6.7–8.4/ 
12 (nt) 
~9.1–12.5/ 
24 (nt) 

0.56–0.70 
0.38–0.52 

Fig. 5 Discussed different 
results for different 
resolutions 

Liu et al. (2016) A two-level 
layered approach 

Sub-basin and 
basic unit 

OpenMP 
+ MPI 

Dispatched simulation tasks at 
sub-basin level and basic unit 
level to multiple processes and 
threads, respectively 

~12–20/24 
(np*nt) 
~14–34/48 
(np*nt) 

0.50–0.83 
0.29–0.71 

Figs. 8 and 
9 

Discussed different 
results for different 
resolutions or 
numbers of sub- 
basins 

Zhu et al. (2019) SEIMS Sub-basin, 
hillslope, or 
basic simulation 
unit (e,g., grid, 
HRU) 

OpenMP 
+ MPI 

A modular and parallelized 
watershed modeling 
framework 

~18/ 
(10np*4nt) 

0.45 Fig. 12 Suitable for a wide 
range of 
hydrological models 

Zhang and Zhou 
(2019) 

A particle-set 
strategy 

Flow path 
network (FPN) 

MPI Decomposed the 
computational workload by 
randomly allocating runoff 
particles to concurrent 
computing processors 

~24/32 
(np*nt) 
~56/128 
(np*nt) 

0.75 
0.44 

Fig. 15 Similar prediction 
accuracy and REP to 
that of tRIBS ( 
Vivoni et al., 2011) 

This study APPA/CHESS 
model 

Grid OpenMP A combination of flexible 
partition for the domain 
decomposition and load 
balance for approaching TMSR 

10.1–10.8/ 
12(nt) 
19.4–20.6/ 
26(nt) 

0.84–0.90 
0.75–0.79 

Fig. 10 TMSR: 10.9–11.9/ 
12 (nt) 
TMSR: 20.6–24.8/ 
26 (nt) for three 
watersheds 

* RSR: real speedup ratio; Derived REP: derived value of real parallel efficiency; TMSR: theoretical maximum speedup ratio; OpenMP: Open Multi-Processing, a shared- 
memory programing standard; MPI: Message Passing Interface, a message-passing standard; “~” means values are estimated from the figures; nt: number of threads; 
np: number of processes (for MPI). 
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larger the simulation unit in terms of the spatial scale (e.g., sub-basin, 
hillslope) is, the less complexity the flow routing network is. As a 
result, the enhancement of computing efficiency is limited in spite of 
increasing parallel resources due to constraints of the binary-tree 
structure of drainage network, which generally have fewer simulation 
units (RSR < 12, Li et al., 2011; Wang et al., 2011; Wang et al., 2012). In 
comparison, modelling with more simulation units, implemented in 
finer basic units (e.g., grids vs sub-basins), larger area coverage (e.g., 
larger watersheds vs smaller watersheds) or higher spatial resolutions 
(e.g., 90 m vs 270 m), is proved to have a larger speed up ratio (Vivoni 
et al., 2011; Liu et al., 2016; Zhang and Zhou, 2019). So as to better 
quantify the progress of proposed parallel framework, the theoretical 
maximum speedup ratios are defined for given processers and given 
model’s applications (Wang et al., 2012; Liu et al., 2013). Compared 
with TMSR, the real parallel efficiency is mainly hampered by two main 
factors: the balance of the computation loads and the increase in inpu
t/output (I/O) costs (Vivoni et al., 2011; Zhang and Zhou, 2019). In this 
study, the combination of spatial domain decomposition and 
load-balanced task allocation is proved effective in reducing the former 
costs. A better load balance is achieved with a different extent of 
disaggregation (Fig. 7). Meanwhile, the communication costs are avoi
ded since we adopted the fork/join structure of OpenMP. As a result, the 
real performance is close to the estimated with efficiency deficit stably 
less than <10% when the number of available threads are less than 24. 
This extra loss of efficiency can be attributed to other factors (e.g., the 
cost of creating threads and building parallel environment, hardware 
limit, data management tools). For example, the best fit between real 
and estimated speedup occurs in the smallest Yuecheng watershed (ef
ficiency deficit < 2% across all experiments used different threads), 
indicating that the real performance of APPA can be improved with an 
advanced data management method in parallelization. 

Although this study demonstrated the possibility for grid-based hy
drological models to approach TMSR at thread-level, the proposed APPA 
can be modified for other types of models. For example, APPA can be 
modified to facilitate the need of parallelization for models based on 
other basic units (e.g., TIN, HRU) or other routing-related computations 
with huge simulation complexity. If the runtime and flow routing of 
each basic unit are defined, APPA can be used for spatial decomposition 
to maximize speedup. Meanwhile, it seems that APPA can be deployed at 

process-thread level with MPI programing, grepping the power of 
computer clusters. The adoption of multiple parallelization levels (e.g., 
threads and processes) can break through the limit of TMSR at thread 
level, which depends on available cores in a computer (RSR > 30, Vivoni 
et al., 2011; Liu et al., 2016). However, the incorporation of MPI is 
relatively more complex than that of OpenMP and may have lower ef
ficiency due to the load of communication among processes (Zhang and 
Zhou, 2019). 

6. Conclusion 

This study proposed the automatic partition-based parallel algorithm 
(APPA) to achieve the optimal state of parallelization for grid-based 
distributed models. The results suggest that the performance of paral
lel computation using grid-based distributed models is sensitive to the 
spatial domain decomposition. By combining flexible partition of units 
(e.g., sub-basins or channel units) with the load balance of thread allo
cation, the estimated speedup ratio in APPA increases noticeably and 
reaches 93–97% of TMSR for simulating hillslope processes and 91–98% 
of TMSR for simulating channel processes using 26-threads. The real 
speedup ratio is greater than 90% of the estimated speedup ratio when 
the number of threads does not exceed the number of cores in our case 
study. Overall, our proposed APPA is useful for parallelizing grid-based 
models to maximize the parallel performance under a given number of 
threads and thus increase the computation efficiency. 
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Appendix

Fig. A1. C++ pseudo code of the parallel algorithm.  
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